kviz
Testi
MATEJMATIKA
RAZVEDRILNA MATEMATIKA
MATEMATIKA
TEKMOVANJA
MATEMATIKA
previous arrow
next arrow
kviz
kviz
MISELNE IGRE
Testi
Testi
Testi in popravci
MATEJMATIKA
MATEJMATIKA
matematične naloge
RAZVEDRILNA MATEMATIKA
RAZVEDRILNA MATEMATIKA
ORIGAMI
TEKMOVANJA
TEKMOVANJA
tekmovanja na šoli
previous arrow
next arrow
Shadow
Ekskurzije
Ekskurzije
na šoli
Krožek
Krožek
planinstvo
Tabori
Tabori
preživetja
Ekologija
Ekologija
v šoli
Orientacijski
Orientacijski
dnevi
previous arrow
next arrow
Shadow
V GORE
POT DRUGAM
NA VODO
POT DRUGAM
NAOKOLI
POT DRUGAM
Bike&Hike
POT DRUGAM
Vodništvo
POT DRUGAM
previous arrow
next arrow
V GORE
V GORE
moje ture v hribih
NA VODO
NA VODO
moje kajak ture
NAOKOLI
NAOKOLI
z mojimi otroki
Bike&Hike
Bike&Hike
z Alenko
Vodništvo
Vodništvo
ture za PD BREŽICE
previous arrow
next arrow
Shadow
Mepi
Mednarodno priznanje za Mlade
Outsider
ŠPORTNO AVANTURISTIČNI TABOR
previous arrow
next arrow
Mepi
Mepi
Outsider
Outsider
previous arrow
next arrow
Shadow

Kaj je MEPI?

Na šoli imamo program MEPI, ki se izvaja v več kot 140 državah po svetu. In kaj je to? je univerzalen, svetovno priznani mladinski program, ki mladim med 14. In 25. letom omogoča, da v svojem prostem času, v okviru neformalnega učenja, z aktivno udeležbo na različnih področjih (prostovoljstvo, veščine, šport in odprava), odkrijejo, razvijejo in uresničijo svoje potenciale. Tako mlade spodbuja k vsestranskemu razvoju v aktivne, odgovorne in zadovoljne ljudi, pripravljene na izzive življenja.

vir:mepi.si

Tags:
mepi

Posledica ljudske modrosti

Ljudska modrost pravi: čas je denar, znanje je moč:
čas = denar
znanje = moč
Po fizikalni formuli je

moč = delo / čas.
Če uporabimo gornje enakosti, dobimo enačbo znanje = delo / denar, kar preoblikujemo v denar = delo / znanje.
Analiza: Ko se znanje neomejeno kopiči, zaslužek konvergira k nuli glede na pravkar vloženo delo.

 

Moji strokovni članki

 Matematično teorijo imaš lahko popolno šele tedaj, ko jo napraviš tako razumljivo, da si upaš njeno vsebino pojasniti prvemu mimoidočemu...

Matematični problem mora biti dovolj težak, da nas privlači, in ne čisto nedostopen, da niso naši napori brezupni.Služiti mora kot smerokaz na za zapletenih poteh, ki vodijo k skritim resnicam, in nas nato nagraditi z veseljem ob najdeni rešitvi (D. Hilbert)

© 2015 MM